Data are the number of species observed in a 0.25 m^2 plot. The original data include the number of stems and percentage cover of each species within the sampling plot. Data collected by Gerry Koza (koz7133@calu.edu) in the summer 2017.

wetlands

Format

A data frame with 78 rows and 5 variables:

site

Gameland

wetland

Wetland number. Can be 1 2 or3

plot

Transect and plot designations

water.depth

depth of water within sapling plot

spp.richness

The number of species observed within the sampling plot

Examples

## Load packages library(ggplot2) library(ggpubr) ## Set wetland as a factor wetlands$wetland <- factor(wetlands$wetland) if (FALSE) { ## Explore data graphically ### Plot boxplots ggpubr::ggboxplot(data = wetlands, y = "spp.richness", x = "wetland", fill = "wetland") ### Plot histograms ggpubr::gghistogram(data = wetlands, x = "spp.richness", title = "All data") ggpubr::gghistogram(data = wetlands, x = "spp.richness", facet.by = "wetland", fill = "wetland", title = "Faceted by wetland") ## Plot means with 95% confidence intervals ggpubr::ggerrorplot(wetlands, x = "wetland", y = "spp.richness", desc_stat = "mean_ci", add = "mean") } ## 1-way ANOVA ### null model model.null <- lm(spp.richness ~ 1, data = wetlands) ### model of interest model.alt <- lm(spp.richness ~ wetland, data = wetlands) ### compare models anova(model.null, model.alt)
#> Analysis of Variance Table #> #> Model 1: spp.richness ~ 1 #> Model 2: spp.richness ~ wetland #> Res.Df RSS Df Sum of Sq F Pr(>F) #> 1 77 494.88 #> 2 75 431.63 2 63.258 5.4959 0.005925 ** #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
## Pairwise comparisons after 1-way ANOVA ### no corrections for multiple comparisons pairwise.t.test(x = wetlands$spp.richness, g = wetlands$wetland, p.adjust.method = "none")
#> #> Pairwise comparisons using t tests with pooled SD #> #> data: wetlands$spp.richness and wetlands$wetland #> #> 1 2 #> 2 0.0391 - #> 3 0.2041 0.0015 #> #> P value adjustment method: none
### Bonferonni correction pairwise.t.test(x = wetlands$spp.richness, g = wetlands$wetland, p.adjust.method = "bonferroni")
#> #> Pairwise comparisons using t tests with pooled SD #> #> data: wetlands$spp.richness and wetlands$wetland #> #> 1 2 #> 2 0.1174 - #> 3 0.6122 0.0044 #> #> P value adjustment method: bonferroni
## Tukey test ### re-fit model with aov() model.alt.aov <- aov(spp.richness ~ wetland, data = wetlands) ### TukeyHSD() on model from aov() TukeyHSD(model.alt.aov)
#> Tukey multiple comparisons of means #> 95% family-wise confidence level #> #> Fit: aov(formula = spp.richness ~ wetland, data = wetlands) #> #> $wetland #> diff lwr upr p adj #> 2-1 -1.4350649 -3.0693145 0.1991846 0.0967414 #> 3-1 0.8214286 -0.7116334 2.3544905 0.4101595 #> 3-2 2.2564935 0.6222440 3.8907430 0.0041631 #>
### Plot effect sizes #plotTukeysHSD(TukeyHSD(model.alt.aov))