7 I
7.1 Talking Glossary: Insertion mutation (1.25 min)
genome.gov/genetics-glossary/Insertion
Abstract: “Insertion is a type of mutation involving the addition of genetic material. An insertion mutation can be small, involving a single extra DNA base pair, or large, involving a piece of a chromosome.”
Image: https://www.genome.gov/sites/default/files/tg/en/illustration/insertion.jpg
Audio: https://www.genome.gov/sites/default/files/tg/en/narration/insertion.mp3
Transcript “Insertion really means that something has been stuck in there. And again, as a geneticist, when we think of an insertion, we think of a piece of DNA, and that can be small or large, being stuck in at a place where it really doesn’t belong. So an insertion of just one base pair could lead to something that we call a frameshift. It shifts the reading of the three-base pair code and by that can throw off the entire protein, and by that can lead, for example, to a birth defect. Insertion can be larger, that, for example, there is an insertion of three base pairs, and then it will not throw off the frame, or it will not lead to a frameshift, and potentially is less harmful than having the insertion of just one base pair. And of course you can have an insertion of huge pieces of DNA. They can be so large that you could actually see it on the chromosome analysis, where all of the smaller insertions you would see only by sequencing the stretch of DNA.”
Maximilian Muenke, M.D.
For an interview with Dr. Muenke, see: https://www.genome.gov/player/wyo8AF_3nz8/PL1ay9ko4A8sk0o9O-YhseFHzbU2I2HQQp
7.2 Intrinscially disordered protein
Adapted from Wikipedia https://en.wikipedia.org/wiki/Intrinsically_disordered_proteins
An intrinsically disordered protein (IDP) is a protein that lacks a fixed or ordered three-dimensional structure (2, 3, 4) typically in the absence of its macromolecular interaction partners, such as other proteins or RNA. IDPs range from fully unstructured to partially structured and include random coil, molten globule-like aggregates, or flexible linkers in large multi-domain proteins. They are sometimes considered as a separate class of proteins along with globular, fibrous and membrane proteins (5).
The discovery of IDPs offers support against the idea that three-dimensional structures of proteins must be fixed to accomplish their biological functions. The dogma of rigid protein structure has been questioned due to the increasing evidence of dynamics being necessary for the protein machines. Despite their lack of stable structure, IDPs are a very large and functionally important class of proteins. Many IDPs can adopt a fixed three-dimensional structure after binding to other macromolecules. Overall, IDPs are different from structured proteins in many ways and tend to have distinctive function, structure, sequence, interactions, evolution and regulation (6).
7.2.1 Abundance
It is now generally accepted that proteins exist as an ensemble of similar structures with some regions more constrained than others. IDPs occupy the extreme end of this spectrum of flexibility.
Bioinformatic predictions indicated that intrinsic disorder is more common in genomes and proteomes than in known structures in the protein database. Based on DISOPRED2 prediction, long (>30 residue) disordered segments occur in 2.0% of archaean, 4.2% of eubacterial and 33.0% of eukaryotic proteins (10) including certain disease-related proteins (11).
7.2.2 Disorder annotation
Intrinsic disorder can be either annotated from experimental information or predicted with specialized software. Disorder prediction algorithms can predict Intrinsic Disorder (ID) propensity with high accuracy (approaching around 80%) based on primary sequence composition, similarity to unassigned segments in protein x-ray datasets, flexible regions in NMR studies and physico-chemical properties of amino acids.
7.2.3 Disorder databases
Databases have been established to annotate protein sequences with intrinsic disorder information. The DisProt database contains a collection of manually curated protein segments which have been experimentally determined to be disordered. MobiDB is a database combining experimentally curated disorder annotations (e.g. from DisProt) with data derived from missing residues in X-ray crystallographic structures and flexible regions in NMR structures.
7.2.4 Predicting IDPs by sequence
Separating disordered from ordered proteins is essential for disorder prediction. One of the first steps to find a factor that distinguishes IDPs from non-IDPs is to specify biases within the amino acid composition. The hydrophilic, charged amino acids (A, R, G, Q, S, P, E and K) have been characterized as disorder-promoting amino acids, while order-promoting amino acids (W, C, F, I, Y, V, L, and N) are hydrophobic and uncharged. The remaining amino acids (H, M, T and D) are ambiguous, found in both ordered and unstructured regions (2). A more recent analysis ranked amino acids by their propensity to form disordered regions as follows (order promoting to disorder promoting): W, F, Y, I, M, L, V, N, C, T, A, G, R, D, H, Q, K, S, E, P (43).
This information is the basis of most sequence-based predictors. Regions with little to no secondary structure, also known as NORS (NO Regular Secondary structure) regions (44) and low-complexity regions can easily be detected. However, not all disordered proteins contain such low complexity sequences.
7.2.5 Prediction methods
Determining disordered regions from lab methods is very costly and time-consuming. Due to the variable nature of IDPs, only certain aspects of their structure can be detected, so that a full characterization requires a large number of different methods and experiments. This further increases the expense of IDP determination. In order to overcome this obstacle, computer-based methods are created for predicting protein structure and function. It is one of the main goals of bioinformatics to derive knowledge by prediction. Predictors for IDP function are also being developed, but mainly use structural information such as linear motif sites (4, 45). There are different approaches for predicting IDP structure, such as neural networks or matrix calculations, based on different structural and/or biophysical properties.
Many computational methods exploit sequence information to predict whether a protein is disordered (46). Notable examples of such software include IUPRED and Disopred. Different methods may use different definitions of disorder. Meta-predictors show a new concept, combining different primary predictors to create a more competent and exact predictor.
Due to the different approaches of predicting disordered proteins, estimating their relative accuracy is fairly difficult. For example, neural networks are often trained on different datasets. The disorder prediction category is a part of biannual CASP experiment that is designed to test methods according accuracy in finding regions with missing 3D structure (marked in PDB files as REMARK465, missing electron densities in X-ray structures).
7.2.6 Disorder and disease
This section optional
Intrinsically unstructured proteins have been implicated in a number of diseases (47). Aggregation of misfolded proteins is the cause of many synucleinopathies and toxicity as those proteins start binding to each other randomly and can lead to cancer or cardiovascular diseases. Thereby, misfolding can happen spontaneously because millions of copies of proteins are made during the lifetime of an organism. The aggregation of the intrinsically unstructured protein α-synuclein is thought to be responsible. The structural flexibility of this protein together with its susceptibility to modification in the cell leads to misfolding and aggregation. Genetics, oxidative and nitrative stress as well as mitochondrial impairment impact the structural flexibility of the unstructured α-synuclein protein and associated disease mechanisms (48). Many key tumour suppressors have large intrinsically unstructured regions, for example p53 and BRCA1. These regions of the proteins are responsible for mediating many of their interactions. Taking the cell’s native defense mechanisms as a model drugs can be developed, trying to block the place of noxious substrates and inhibiting them, and thus counteracting the disease (49).
References
- Majorek K, Kozlowski L, Jakalski M, Bujnicki JM (December 18, 2008). “Chapter 2: First Steps of Protein Structure Prediction” (PDF). In Bujnicki J (ed.). Prediction of Protein Structures, Functions, and Interactions. John Wiley & Sons, Ltd. pp. 39–62. doi:10.1002/9780470741894.ch2. ISBN 9780470517673.
- Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW, Ausio J, Nissen MS, Reeves R, Kang C, Kissinger CR, Bailey RW, Griswold MD, Chiu W, Garner EC, Obradovic Z (2001). “Intrinsically disordered protein”. Journal of Molecular Graphics & Modelling. 19 (1): 26–59. CiteSeerX 10.1.1.113.556. doi:10.1016/s1093-3263(00)00138-8. PMID 11381529.
- Dyson HJ, Wright PE (March 2005). “Intrinsically unstructured proteins and their functions”. Nature Reviews Molecular Cell Biology. 6 (3): 197–208. doi:10.1038/nrm1589. PMID 15738986. S2CID 18068406.
- Dunker AK, Silman I, Uversky VN, Sussman JL (December 2008). “Function and structure of inherently disordered proteins”. Current Opinion in Structural Biology. 18 (6): 756–64. doi:10.1016/j.sbi.2008.10.002. PMID 18952168.
- Andreeva A, Howorth D, Chothia C, Kulesha E, Murzin AG (January 2014). “SCOP2 prototype: a new approach to protein structure mining”. Nucleic Acids Research. 42 (Database issue): D310–4. doi:10.1093/nar/gkt1242. PMC 3964979. PMID 24293656.
- van der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW, Dunker AK, Fuxreiter M, Gough J, Gsponer J, Jones DT, Kim PM, Kriwacki RW, Oldfield CJ, Pappu RV, Tompa P, Uversky VN, Wright PE, Babu MM (2014). “Classification of intrinsically disordered regions and proteins”. Chemical Reviews. 114 (13): 6589–631. doi:10.1021/cr400525m. PMC 4095912. PMID 24773235.
- Song J, Lee MS, Carlberg I, Vener AV, Markley JL (December 2006). “Micelle-induced folding of spinach thylakoid soluble phosphoprotein of 9 kDa and its functional implications”. Biochemistry. 45 (51): 15633–43. doi:10.1021/bi062148m. PMC 2533273. PMID 17176085.
- Anfinsen, Christian B. (20 July 1973). “Principles that Govern the Folding of Protein Chains”. Science. 181 (4096): 223–230. doi:10.1126/science.181.4096.223. PMID 4124164.
- Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW, Ausio J, Nissen MS, Reeves R, Kang C, Kissinger CR, Bailey RW, Griswold MD, Chiu W, Garner EC, Obradovic Z (2001-01-01). “Intrinsically disordered protein”. Journal of Molecular Graphics & Modelling. 19 (1): 26–59. CiteSeerX 10.1.1.113.556. doi:10.1016/s1093-3263(00)00138-8. PMID 11381529.
- Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT (March 2004). “Prediction and functional analysis of native disorder in proteins from the three kingdoms of life”. Journal of Molecular Biology. 337 (3): 635–45. CiteSeerX 10.1.1.120.5605. doi:10.1016/j.jmb.2004.02.002. PMID 15019783.
- Uversky VN, Oldfield CJ, Dunker AK (2008). “Intrinsically disordered proteins in human diseases: introducing the D2 concept”. Annual Review of Biophysics. 37: 215–46. doi:10.1146/annurev.biophys.37.032807.125924. PMID 18573080.
- Bu Z, Callaway DJ (2011). “Proteins move! Protein dynamics and long-range allostery in cell signaling”. Protein Structure and Diseases. Advances in Protein Chemistry and Structural Biology. 83. pp. 163–221. doi:10.1016/B978-0-12-381262-9.00005-7. ISBN 9780123812629. PMID 21570668.
- Kamerlin SC, Warshel A (May 2010). “At the dawn of the 21st century: Is dynamics the missing link for understanding enzyme catalysis?”. Proteins. 78 (6): 1339–75. doi:10.1002/prot.22654. PMC 2841229. PMID 20099310.
- Collins MO, Yu L, Campuzano I, Grant SG, Choudhary JS (July 2008). “Phosphoproteomic analysis of the mouse brain cytosol reveals a predominance of protein phosphorylation in regions of intrinsic sequence disorder” (PDF). Molecular & Cellular Proteomics. 7 (7): 1331–48. doi:10.1074/mcp.M700564-MCP200. PMID 18388127. S2CID 22193414.
- Iakoucheva LM, Brown CJ, Lawson JD, Obradović Z, Dunker AK (October 2002). “Intrinsic disorder in cell-signaling and cancer-associated proteins”. Journal of Molecular Biology. 323 (3): 573–84. CiteSeerX 10.1.1.132.682. doi:10.1016/S0022-2836(02)00969-5. PMID 12381310.
- Sandhu KS (2009). “Intrinsic disorder explains diverse nuclear roles of chromatin remodeling proteins”. Journal of Molecular Recognition. 22 (1): 1–8. doi:10.1002/jmr.915. PMID 18802931. S2CID 33010897.
- Wilson, Benjamin A.; Foy, Scott G.; Neme, Rafik; Masel, Joanna (24 April 2017). “Young genes are highly disordered as predicted by the preadaptation hypothesis of de novo gene birth”. Nature Ecology & Evolution. 1 (6): 0146–146. doi:10.1038/s41559-017-0146. PMC 5476217. PMID 28642936.
- Willis, Sara; Masel, Joanna (September 2018). “Gene Birth Contributes to Structural Disorder Encoded by Overlapping Genes”. Genetics. 210 (1): 303–313. doi:10.1534/genetics.118.301249. PMC 6116962. PMID 30026186. Lee SH, Kim DH, Han JJ, Cha EJ, Lim JE, Cho YJ, Lee C, Han KH (February 2012). “Understanding pre-structured motifs (PreSMos) in intrinsically unfolded proteins”. Current Protein & Peptide Science. 13 (1): 34–54. doi:10.2174/138920312799277974. PMID 22044148.
- Mohan A, Oldfield CJ, Radivojac P, Vacic V, Cortese MS, Dunker AK, Uversky VN (October 2006). “Analysis of molecular recognition features (MoRFs)”. Journal of Molecular Biology. 362 (5): 1043–59. doi:10.1016/j.jmb.2006.07.087. PMID 16935303.
- Gunasekaran K, Tsai CJ, Kumar S, Zanuy D, Nussinov R (February 2003). “Extended disordered proteins: targeting function with less scaffold”. Trends in Biochemical Sciences. 28 (2): 81–5. doi:10.1016/S0968-0004(03)00003-3. PMID 12575995.
- Sandhu KS, Dash D (July 2007). “Dynamic alpha-helices: conformations that do not conform”. Proteins. 68 (1): 109–22. doi:10.1002/prot.21328. PMID 17407165. S2CID 96719019.
- Tarakhovsky A, Prinjha RK (July 2018). “Drawing on disorder: How viruses use histone mimicry to their advantage”. The Journal of Experimental Medicine. 215 (7): 1777–1787. doi:10.1084/jem.20180099. PMC 6028506. PMID 29934321.
- Atkinson SC, Audsley MD, Lieu KG, Marsh GA, Thomas DR, Heaton SM, Paxman JJ, Wagstaff KM, Buckle AM, Moseley GW, Jans DA, Borg NA (January 2018). “Recognition by host nuclear transport proteins drives disorder-to-order transition in Hendra virus V”. Scientific Reports. 8 (1): 358. Bibcode:2018NatSR…8..358A. doi:10.1038/s41598-017-18742-8. PMC 5762688. PMID 29321677.
- Fuxreiter M (January 2012). “Fuzziness: linking regulation to protein dynamics”. Molecular BioSystems. 8 (1): 168–77. doi:10.1039/c1mb05234a. PMID 21927770.
- Fuxreiter M, Simon I, Bondos S (August 2011). “Dynamic protein-DNA recognition: beyond what can be seen”. Trends in Biochemical Sciences. 36 (8): 415–23. doi:10.1016/j.tibs.2011.04.006. PMID 21620710.
- Borgia A, Borgia MB, Bugge K, Kissling VM, Heidarsson PO, Fernandes CB, Sottini A, Soranno A, Buholzer KJ, Nettels D, Kragelund BB, Best RB, Schuler B (March 2018). “Extreme disorder in an ultrahigh-affinity protein complex”. Nature. 555 (7694): 61–66. Bibcode:2018Natur.555…61B. doi:10.1038/nature25762. PMC 6264893. PMID 29466338.
- Feng H, Zhou BR, Bai Y (November 2018). “Binding Affinity and Function of the Extremely Disordered Protein Complex Containing Human Linker Histone H1.0 and Its Chaperone ProTα”. Biochemistry. 57 (48): 6645–6648. doi:10.1021/acs.biochem.8b01075. PMC 7984725. PMID 30430826. Uversky VN (August 2011). “Intrinsically disordered proteins from A to Z”. The International Journal of Biochemistry & Cell Biology. 43 (8): 1090–103. doi:10.1016/j.biocel.2011.04.001. PMID 21501695.
- Oldfield, C. (2014). “Intrinsically Disordered Proteins and Intrinsically Disordered Protein Regions”. Annual Review of Biochemistry. 83: 553–584. doi:10.1146/annurev-biochem-072711-164947. PMID 24606139.
- Theillet FX, Binolfi A, Bekei B, Martorana A, Rose HM, Stuiver M, Verzini S, Lorenz D, van Rossum M, Goldfarb D, Selenko P (2016). “Structural disorder of monomeric α-synuclein persists in mammalian cells”. Nature. 530 (7588): 45–50. Bibcode:2016Natur.530…45T. doi:10.1038/nature16531. PMID 26808899. S2CID 4461465.
- Minde DP, Ramakrishna M, Lilley KS (2018). “Biotinylation by proximity labelling favours unfolded proteins”. bioRxiv. doi:10.1101/274761.
- Minde DP, Ramakrishna M, Lilley KS (2020). “Biotin proximity tagging favours unfolded proteins and enables the study of intrinsically disordered regions”. Communications Biology. 3 (1): 38. doi:10.1038/s42003-020-0758-y. PMC 6976632. PMID 31969649.
- Minde DP, Maurice MM, Rüdiger SG (2012). Uversky VN (ed.). “Determining biophysical protein stability in lysates by a fast proteolysis assay, FASTpp”. PLOS ONE. 7 (10): e46147. Bibcode:2012PLoSO…746147M. doi:10.1371/journal.pone.0046147. PMC 3463568. PMID 23056252.
- Park C, Marqusee S (March 2005). “Pulse proteolysis: a simple method for quantitative determination of protein stability and ligand binding”. Nature Methods. 2 (3): 207–12. doi:10.1038/nmeth740. PMID 15782190. S2CID 21364478.
- Robaszkiewicz K, Ostrowska Z, Cyranka-Czaja A, Moraczewska J (May 2015). “Impaired tropomyosin-troponin interactions reduce activation of the actin thin filament”. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 1854 (5): 381–90. doi:10.1016/j.bbapap.2015.01.004. PMID 25603119.
- Minde DP, Radli M, Forneris F, Maurice MM, Rüdiger SG (2013). Buckle AM (ed.). “Large extent of disorder in Adenomatous Polyposis Coli offers a strategy to guard Wnt signalling against point mutations”. PLOS ONE. 8 (10): e77257. Bibcode:2013PLoSO…877257M. doi:10.1371/journal.pone.0077257. PMC 3793970. PMID 24130866.
- Brucale M, Schuler B, Samorì B (March 2014). “Single-molecule studies of intrinsically disordered proteins”. Chemical Reviews. 114 (6): 3281–317. doi:10.1021/cr400297g. PMID 24432838.
- Neupane K, Solanki A, Sosova I, Belov M, Woodside MT (2014). “Diverse metastable structures formed by small oligomers of α-synuclein probed by force spectroscopy”. PLOS ONE. 9 (1): e86495. Bibcode:2014PLoSO…986495N. doi:10.1371/journal.pone.0086495. PMC 3901707. PMID 24475132.
- Japrung D, Dogan J, Freedman KJ, Nadzeyka A, Bauerdick S, Albrecht T, Kim MJ, Jemth P, Edel JB (February 2013). “Single-molecule studies of intrinsically disordered proteins using solid-state nanopores”. Analytical Chemistry. 85 (4): 2449–56. doi:10.1021/ac3035025. PMID 23327569.
- Min D, Kim K, Hyeon C, Cho YH, Shin YK, Yoon TY (2013). “Mechanical unzipping and rezipping of a single SNARE complex reveals hysteresis as a force-generating mechanism”. Nature Communications. 4 (4): 1705. Bibcode:2013NatCo…4.1705M. doi:10.1038/ncomms2692. PMC 3644077. PMID 23591872.
- Miyagi A, Tsunaka Y, Uchihashi T, Mayanagi K, Hirose S, Morikawa K, Ando T (September 2008). “Visualization of intrinsically disordered regions of proteins by high-speed atomic force microscopy”. ChemPhysChem. 9 (13): 1859–66. doi:10.1002/cphc.200800210. PMID 18698566.
- Campen, Andrew; Williams, Ryan M.; Brown, Celeste J.; Meng, Jingwei; Uversky, Vladimir N.; Dunker, A. Keith (2008). “TOP-IDP-scale: a new amino acid scale measuring propensity for intrinsic disorder”. Protein and Peptide Letters. 15 (9): 956–963. doi:10.2174/092986608785849164. ISSN 0929-8665. PMC 2676888. PMID 18991772.
- Schlessinger A, Schaefer C, Vicedo E, Schmidberger M, Punta M, Rost B (June 2011). “Protein disorder–a breakthrough invention of evolution?”. Current Opinion in Structural Biology. 21 (3): 412–8. doi:10.1016/j.sbi.2011.03.014. PMID 21514145.
- Tompa, P. (2011). “Unstructural biology coming of age”. Current Opinion in Structural Biology. 21 (3): 419–425. doi:10.1016/j.sbi.2011.03.012. PMID 21514142.
- Ferron F, Longhi S, Canard B, Karlin D (October 2006). “A practical overview of protein disorder prediction methods”. Proteins. 65 (1): 1–14. doi:10.1002/prot.21075. PMID 16856179. S2CID 30231497.
- Uversky VN, Oldfield CJ, Dunker AK (2008). “Intrinsically disordered proteins in human diseases: introducing the D2 concept”. Annual Review of Biophysics. 37: 215–46. doi:10.1146/annurev.biophys.37.032807.125924. PMID 18573080.
- Wise-Scira O, Dunn A, Aloglu AK, Sakallioglu IT, Coskuner O (March 2013). “Structures of the E46K mutant-type α-synuclein protein and impact of E46K mutation on the structures of the wild-type α-synuclein protein”. ACS Chemical Neuroscience. 4 (3): 498–508. doi:10.1021/cn3002027. PMC 3605821. PMID 23374074.
- Dobson CM (December 2003). “Protein folding and misfolding”. Nature. 426 (6968): 884–90. Bibcode:2003Natur.426..884D. doi:10.1038/nature02261. PMID 14685248. S2CID 1036192.
- Best RB, Zhu X, Shim J, Lopes PE, Mittal J, Feig M, Mackerell AD (September 2012). “Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles”. Journal of Chemical Theory and Computation. 8 (9): 3257–3273. doi:10.1021/ct300400x. PMC 3549273. PMID 23341755.
- Best RB (February 2017). “Computational and theoretical advances in studies of intrinsically disordered proteins”. Current Opinion in Structural Biology. 42: 147–154. doi:10.1016/j.sbi.2017.01.006. PMID 28259050.
- Chong SH, Chatterjee P, Ham S (May 2017). “Computer Simulations of Intrinsically Disordered Proteins”. Annual Review of Physical Chemistry. 68: 117–134. Bibcode:2017ARPC…68..117C. doi:10.1146/annurev-physchem-052516-050843. PMID 28226222.
- Fox SJ, Kannan S (September 2017). “Probing the dynamics of disorder”. Progress in Biophysics and Molecular Biology. 128: 57–62. doi:10.1016/j.pbiomolbio.2017.05.008. PMID 28554553.
- Terakawa T, Takada S (September 2011). “Multiscale ensemble modeling of intrinsically disordered proteins: p53 N-terminal domain”. Biophysical Journal. 101 (6): 1450–8. Bibcode:2011BpJ…101.1450T. doi:10.1016/j.bpj.2011.08.003. PMC 3177054. PMID 21943426.
- Fisher CK, Stultz CM (June 2011). “Constructing ensembles for intrinsically disordered proteins”. Current Opinion in Structural Biology. 21 (3): 426–31. doi:10.1016/j.sbi.2011.04.001. PMC 3112268. PMID 21530234.
- Apicella A, Marascio M, Colangelo V, Soncini M, Gautieri A, Plummer CJ (June 2017). “Molecular dynamics simulations of the intrinsically disordered protein amelogenin”. Journal of Biomolecular Structure & Dynamics. 35 (8): 1813–1823. doi:10.1080/07391102.2016.1196151. PMID 27366858. S2CID 205576649.
- Zerze GH, Miller CM, Granata D, Mittal J (June 2015). “Free energy surface of an intrinsically disordered protein: comparison between temperature replica exchange molecular dynamics and bias-exchange metadynamics”. Journal of Chemical Theory and Computation. 11 (6): 2776–82. doi:10.1021/acs.jctc.5b00047. PMID 26575570.
- Granata D, Baftizadeh F, Habchi J, Galvagnion C, De Simone A, Camilloni C, Laio A, Vendruscolo M (October 2015). “The inverted free energy landscape of an intrinsically disordered peptide by simulations and experiments”. Scientific Reports. 5: 15449. Bibcode:2015NatSR…515449G. doi:10.1038/srep15449. PMC 4620491. PMID 26498066.
- Iida, Shinji; Kawabata, Takeshi; Kasahara, Kota; Nakamura, Haruki; Higo, Junichi (2019-03-22). “Multimodal Structural Distribution of the p53 C-Terminal Domain upon Binding to S100B via a Generalized Ensemble Method: From Disorder to Extradisorder”. Journal of Chemical Theory and Computation. 15 (4): 2597–2607. doi:10.1021/acs.jctc.8b01042. ISSN 1549-9618. PMID 30855964.
- Kurcinski M, Kolinski A, Kmiecik S (June 2014). “Mechanism of Folding and Binding of an Intrinsically Disordered Protein As Revealed by ab Initio Simulations”. Journal of Chemical Theory and Computation. 10 (6): 2224–31. doi:10.1021/ct500287c. PMID 26580746.
- Ciemny, Maciej Pawel; Badaczewska-Dawid, Aleksandra Elzbieta; Pikuzinska, Monika; Kolinski, Andrzej; Kmiecik, Sebastian (2019). “Modeling of Disordered Protein Structures Using Monte Carlo Simulations and Knowledge-Based Statistical Force Fields”. International Journal of Molecular Sciences. 20 (3): 606. doi:10.3390/ijms20030606. PMC 6386871. PMID 30708941.
- Uversky VN (2013). “Digested disorder: Quarterly intrinsic disorder digest (January/February/March, 2013)”. Intrinsically Disordered Proteins. 1 (1): e25496. doi:10.4161/idp.25496. PMC 5424799. PMID 28516015.
- Costantini S, Sharma A, Raucci R, Costantini M, Autiero I, Colonna G (March 2013). “Genealogy of an ancient protein family: the Sirtuins, a family of disordered members”. BMC Evolutionary Biology. 13: 60. doi:10.1186/1471-2148-13-60. PMC 3599600. PMID 23497088.